skip to main content


Search for: All records

Creators/Authors contains: "Schulte‐Pelkum, Vera"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The composition of the crust is one of the most uncertain and controversial components of continental estimates due to (1) limited direct access and (2) inconsistent indirect assessments. Here we show that by combining high-resolution shear velocity (Vs) models with newly measured with newly measured ratio of compressional wave velocity (Vp) and Vs, or Vp/Vs ratio, for the crystalline crust, a 3-D composition (SiO2 wt%) model of the continental crust can be derived with uncertainty estimates. Comparing the model with local xenolith data shows consistency at mid and lower crustal depths. The spatial patterns in bulk SiO2 content correlate with major geological provinces, including the footprints of Cenozoic and Mesozoic mafic volcanism in the western U.S., and offer new insight into the composition and evolution of the continental U.S. 
    more » « less
  2. Abstract As North America collided with Africa to form Pangea during the Alleghanian orogeny, crystalline and sedimentary rocks in the southeastern United States were thrust forelandward along the Appalachian décollement. We examined Ps receiver functions to better constrain the kinematics of this prominent subsurface structure. From Southeastern Suture of the Appalachian Margin Experiment (SESAME) and other EarthScope stations on the Blue Ridge–Piedmont crystalline megathrust, we find large arrivals from a 5–10-km-deep converter. We argue that a strong contrast in dipping anisotropic foliation occurs at the subhorizontal Appalachian décollement, and propose that such a geometry may be typical for décollement structures. Conversion polarity flips can be explained by an east-dipping foliation, but this orientation is at odds with the overlying northeast-trending surface tectonic grain. We suggest that prior to late Alleghanian northwest-directed head-on collision, the Appalachian décollement accommodated early Alleghanian west-vergence, independent of the overlying Blue Ridge–Piedmont structural inheritance. The geophysical expression of dipping anisotropic foliation provides a powerful tool for investigating subsurface kinematics, especially where they are obscured by overlying fabric, to disentangle the tectonic complexities that embody oblique collisional orogens. 
    more » « less
  3. Abstract

    Seismic anisotropy is controlled by aligned rock‐forming minerals, which most studies attribute to solid‐state shear with less consideration for magmatic fabric in plutonic rocks (rigid‐body rotation of crystals in the presence of melt). Our study counters this traditional solid‐state bias by evaluating contributions from fossil magmatic fabric. We collected samples from various tectonic settings, identified mineral orientations with electron backscatter diffraction and neutron diffraction, and calculated their bulk rock elastic properties. Results indicate that magmatic fabric may lead to moderate to strong anisotropy (3%–9%), comparable to solid‐state deformation. Also, magmatically aligned feldspar may cause foliation‐perpendicular fast velocity, a unique orientation that contrasts with a fast foliation typical of solid‐state deformation. Therefore, magmatic fabric may be more relevant to seismic anisotropy than previously recognized. Accordingly, increased considerations of magmatic fabric in arcs, batholiths, and other tectonic settings can change and potentially improve the prediction, observation, and interpretation of crustal seismic anisotropy.

     
    more » « less
  4. null (Ed.)
    Abstract Azimuthal variations in receiver function conversions can image lithospheric structural contrasts and anisotropic fabrics that together compose tectonic grain. We apply this method to data from EarthScope Transportable Array in Alaska and additional stations across the northern Cordillera. The best-resolved quantities are the strike and depth of dipping fabric contrasts or interfaces. We find a strong geographic gradient in such anomalies, with large amplitudes extending inboard from the present-day subduction margin, the Aleutian arc, and an influence of flat-slab subduction of the Yakutat microplate north of the Denali fault. An east–west band across interior Alaska shows low-amplitude crustal anomalies. Anomaly amplitudes correlate with structural intensity (density of aligned geological elements), but are the highest in areas of strong Cenozoic deformation, raising the question of an influence of current stress state. Imaged subsurface strikes show alignment with surface structures. We see concentric strikes around arc volcanoes implying dipping magmatic structures and fabric into the middle crust. Regions with present-day weaker deformation show lower anomaly amplitudes but structurally aligned strikes, suggesting pre-Cenozoic fabrics may have been overprinted or otherwise modified. We observe general coherence of the signal across the brittle-plastic transition. Imaged crustal fabrics are aligned with major faults and shear zones, whereas intrafault blocks show imaged strikes both parallel to and at high angles to major block-bounding faults. High-angle strikes are subparallel to neotectonic deformation, seismicity, fault lineaments, and prominent metallogenic belts, possibly due to overprinting and/or co-evolution with fault-parallel fabrics. We suggest that the underlying tectonic grain in the northern Cordillera is broadly distributed rather than strongly localized. Receiver functions thus reveal key information about the nature and continuity of tectonic fabrics at depth and can provide unique insights into the deformation history and distribution of regional strain in complex orogenic belts. 
    more » « less
  5. Abstract

    The convergent plate boundary in eastern Indonesia and Timor‐Leste captures an active oblique collision between the Banda Arc and the Australian plate. We analyzed ∼5 years' worth (2014–2019) of radial and tangential teleseismic Ps receiver functions (RFs) observed at 30 temporary broadband seismic stations across the area. Azimuthal variations in RF arrivals are observed throughout the region, indicative of the presence of oriented tectonic fabrics (dipping contrasts or plunging axis anisotropy) from a variety of crustal depths. The two main strikes of these fabrics are roughly parallel to the orogen and the plate convergence across the outer arc islands, likely associated with orogenic and strike‐slip structures. We observe distinct double polarity‐reversal arrivals with opposite polarity that reflect an anisotropic layer with orogen‐parallel strikes in the shallow crust beneath Timor and Savu, interpreted as metamorphic rocks. Fabrics oriented E‐W are imaged beneath the Flores and Lomblen that host active volcanoes, where we find interesting correlations with magmatic structures. NNW‐SSE striking fabric is imaged at ∼13 km depth beneath central Flores, which relates to a connected dike magmatic system that feeds the aligned cinder cones exposed on the surface. Finally, we identify convergence‐parallel fabrics on the volcano‐extinct islands of Alor and Atauro, consistent with one main fabric orientation imaged in Timor. We suggest all convergence‐parallel fabrics might accommodate strike‐slip motion generated by the overall NNE convergence of the Australian plate with respect to Eurasian plate and contribute to strain partitioning between the trough and backarc resulting from the collision.

     
    more » « less
  6. Abstract Earthquakes are known to occur beneath southern Tibet at depths up to ∼95 km. Whether these earthquakes occur within the lower crust thickened in the Himalayan collision or in the mantle is a matter of current debate. Here we compare vertical travel paths expressed as delay times between S and P arrivals for local events to delay times of P-to-S conversions from the Moho in receiver functions. The method removes most of the uncertainty introduced in standard analysis from using velocity models for depth location and migration. We show that deep seismicity in southern Tibet is unequivocally located beneath the Moho in the mantle. Deep seismicity in continental lithosphere occurs under normally ductile conditions and has therefore garnered interest in whether its occurrence is due to particularly cold temperatures or whether other factors are causing embrittlement of ductile material. Eclogitization in the subducting Indian crust has been proposed as a cause for the deep seismicity in this area. Our observation of seismicity in the mantle, falling below rather than within the crustal layer with proposed eclogitization, requires revisiting this concept and favors other embrittlement mechanisms that operate within mantle material. 
    more » « less
  7. Abstract

    Deep continental crustal structures are enigmatic due to lack of direct exposures and limited tools to investigate them remotely. Seismic waves can sample these rocks, but most seismic methods focus on coarse crustal structures while laboratory measurements concentrate on crystal‐scale rock properties, and little work has been conducted to bridge this interpretation gap. In some places, geologic maps of crystalline basement provide samples of the intermediate‐scale fabrics and structures that may represent in situ deep crust. However, previous research has not considered natural geometric variations from map data, nor is this heterogeneity typically included in map‐scale seismic property calculations. Here, we test how map‐scale fabrics influence crustal seismic anisotropy in Colorado by analyzing structural data from geologic maps, combining those data with bulk rock elastic tensors to calculate map‐scale seismic properties, and evaluating the resulting comparisons with observed receiver function A1 (360° periodic) arrivals. Crystalline fabrics, predicted seismic properties, and tectonic structures positively correlate with shallow and deep crustal A1 arrivals. Additionally, widespread correlations occur between mapped fault traces and regional foliations, implying that preexisting mechanical heterogeneity may have strongly influenced subsequent reactivation. We interpret that various mapped geologic contact types (e.g., lithologic and structural) generate A1 arrivals and that multiple parallel features (e.g., faults, foliations, and intrusions) contribute to a seismically visible tectonic grain. Therefore, Colorado's exhumed basement, as expressed in outcrops and maps, offers insight into modern deep crustal geological and geophysical structure.

     
    more » « less
  8. Abstract

    The style of convective force transmission to plates and strain‐localization within and underneath plate boundaries remain debated. To address some of the related issues, we analyze a range of deformation indicators in southern California from the surface to the asthenosphere. Present‐day surface strain rates can be inferred from geodesy. At seismogenic crustal depths, stress can be inferred from focal mechanisms and splitting of shear waves from local earthquakes via crack‐dependent seismic velocities. At greater depths, constraints on rock fabrics are obtained from receiver function anisotropy,PnandPtomography, surface wave tomography, and splitting ofSKSand other teleseismic core phases. We construct a synthesis of deformation‐related observations focusing on quantitative comparisons of deformation style. We find consistency with roughly N‐S compression and E‐W extension near the surface and in the asthenospheric mantle. However, all lithospheric anisotropy indicators show deviations from this pattern.Pnfast axes and dipping foliations from receiver functions are fault‐parallel with no localization to fault traces and match post‐Farallon block rotations in the Western Transverse Ranges. Local shear wave splitting orientations deviate from the stress orientations inferred from focal mechanisms in significant portions of the area. We interpret these observations as an indication that lithospheric fabric, developed during Farallon subduction and subsequent extension, has not been completely reset by present‐day transform motion and may influence the current deformation behavior. This provides a new perspective on the timescales of deformation memory and lithosphere‐asthenosphere interactions.

     
    more » « less
  9. Abstract

    Near‐surface seismic velocity structure plays a critical role in ground motion amplification during large earthquakes. In particular, the local Vp/Vs ratio strongly influences the amplitude of Rayleigh waves. Previous studies have separately imaged 3D seismic velocity and Vp/Vs ratio at seismogenic depth, but lack regional coverage and/or fail to constrain the shallowest structure. Here, we combine three datasets with complementary sensitivity in a Bayesian joint inversion for shallow crustal shear velocity and near‐surface Vp/Vs ratio across Southern California. Receiver functions–including with an apparent delayed initial peak in sedimentary basins, and long considered a nuisance in receiver function imaging studies–highly correlate with short‐period Rayleigh wave ellipticity measurements and require the inclusion of a Vp/Vs parameter. The updated model includes near‐surface low shear velocity more in line with geotechnical layer estimates, and generally lower than expected Vp/Vs outside the basins suggesting widespread shallow fracturing and/or groundwater undersaturation.

     
    more » « less